45 research outputs found

    Fitting the Viking lander surface pressure cycle with a Mars General Circulation Model

    Get PDF
    We present a systematic attempt to fit the Viking lander surface pressure cycle using a Mars General Circulation Model, MarsWRF. Following the earlier study by Wood and Paige (1992) using a one-dimensional model, high-precision fitting was achieved by tuning five time-independent parameters: the albedo and emissivity of the seasonal caps of the two hemispheres and the total CO_2 inventory in the atmosphere frost system. We used a linear iterative method to derive the best fit parameters: albedo of the northern cap = 0.795, emissivity of the northern cap = 0.485, albedo of the southern cap = 0.461, emissivity of the southern cap = 0.785, and total CO_2 mass = 2.83 × 10^(16) kg. If these parameters are used in MarsWRF, the smoothed surface pressure residual at the VL1 site is always smaller than several Pascal through a year. As in other similar studies, the best fit parameters do not match well with the current estimation of the seasonal cap radiative properties, suggesting that important physics contributing to the energy balance not explicitly included in MarsWRF have been effectively aliased into the derived parameters. One such effect is likely the variation of thermal conductivity with depth in the regolith due to the presence of water ice. Including such a parameterization in the fitting process improves the reasonableness of the best fit cap properties, mostly improving the emissivities. The conductivities required in the north to provide the best fit are higher than those required in the south. A completely physically reasonable set of fit parameters could still not be attained. Like all prior published GCM simulations, none of the cases considered are capable of predicting a residual southern CO_2 cap

    Behavior of dust in the Martian atmosphere

    Get PDF
    Two aspects of the dust cycle on Mars are examined: the seasonal variation of dust aerosols in the atmosphere as observed by spacecraft and dust lifting by high wind stress at the south pole during late spring employing a specially developed mesoscale atmospheric model. Reanalysis of Viking mission optical depth measurements shows that the visible to infrared ratio of total extinction opacity varies with season, and is due to seasonally varying water ice haze. The Martian atmosphere is clearer of dust, especially during northern spring and summer, than previously thought. Water ice hazes can provide roughly 50% of the total visible opacity in these seasons, and that they represent only 1-5% of the total water column. Next, the conversion for use on Mars of a terrestrial mesoscale atmospheric model (the Mars MM5) is presented and described. Validation of the Mars MM5 is conducted by comparison with a general circulation model on scales of a few hundred kilometers and with Martian surface landers (Viking Lander 1, Viking Lander 2, and Mars Pathfinder) on scales of a few kilometers, and in both cases there is good agreement in the meteorological variables of temperature, pressure, and wind. Tides are found to be at least as important as slopes in generating the diurnal cycle of winds at the lander sites, in contrast to previous one-dimensional studies. Finally, assuming that dust injection is related to the movement of sand-sized grains or aggregates, the Mars MM5 predicts wind stresses of sufficient strength to initiate movement of sand-sized particles, and hence dust lifting, during late southern spring in the south polar region. It is found that the direct cap edge thermal contrast provides the primary drive for high surface wind stresses at the cap edge at this season while sublimation flow is not found to be particularly important. Comparison between simulations, in which dust is injected when wind stresses are high and those with inactive dust injection, show no signs of consistent feedback due to dust clouds on the surface wind stress fields during the late spring season examined here

    On the mystery of the perennial carbon dioxide cap at the south pole of Mars

    Get PDF
    A perennial ice cap has long been observed near the south pole of Mars. The surface of this cap is predominantly composed of carbon dioxide ice. The retention of a CO_2 ice cap results from the surface energy balance of the latent heat, solar radiation, surface emission, subsurface conduction, and atmospheric sensible heat. While models conventionally treat surface CO_2 ice using constant ice albedos and emissivities, such an approach fails to predict the existence of a perennial cap. Here we explore the role of the insolation-dependent ice albedo, which agrees well with Viking, Mars Global Surveyor, and Mars Express albedo observations. Using a simple parameterization within a general circulation model, in which the albedo of CO_2 ice responds linearly to the incident solar insolation, we are able to predict the existence of a perennial CO_2 cap at the observed latitude and only in the southern hemisphere. Further experiments with different total CO_2 inventories, planetary obliquities, and surface boundary conditions suggest that the location of the residual cap may exchange hemispheres favoring the pole with the highest peak insolation

    A first look at dust lifting and dust storms near the south pole of Mars with a mesoscale model

    Get PDF
    Surface wind stresses and dust lifting in the south polar region of Mars are examined with a three-dimensional numerical model. The focus of this study is the middle to late southern spring period when cap-edge dust lifting events are observed. Mesoscale model simulations of high southern latitudes are conducted at three dates within this season (L_s = 225°, 255°, and 310°). Assuming that dust injection is related to the saltation of sand-sized grains or aggregates, the Mars MM5 mesoscale model predicts surface wind stresses of sufficient strength to initiate movement of sand-sized particles (∼100 μm), and hence dust lifting, during all three periods. The availability of dust and/or sand-sized particles is not addressed within this study. Instead, the degree to which the existence of sufficiently strong winds limit dust injection is examined. By eliminating forcing elements from the model, the important dynamical modes generating high wind stresses are isolated. The direct cap-edge thermal contrast (and topographic slopes in some locations) provides the primary drive for high surface wind stresses at the cap edge, while sublimation flow is not found to be particularly important, at these three dates. Simulations in which dust is injected into the lowest model layer when wind stresses exceed a threshold show similar patterns of atmospheric dust to those seen in recent observations. Comparison between these simulations and those without active dust injection shows no signs of consistent positive or negative feedback due to dust clouds on the surface wind stress fields during the late spring season examined here

    Cyclones, tides, and the origin of a cross-equatorial dust storm on Mars

    Get PDF
    We investigate the triggering mechanism of a cross-equatorial dust storm observed by Mars Global Surveyor in 1999. This storm, which had a significant impact on global mean temperatures, was seen in visible and infrared data to commence with the transport of linear dust fronts from the northern high latitudes into the southern tropics. However, other similar transport events observed in northern fall and winter did not lead to large dust storms. Based on off-line Lagrangian particle transport analysis using a high resolution Mars general circulation model, we propose a simple explanation for the diurnal, seasonal and interannual variability of this type of frontal activity, and of the resulting dust storms, that highlights the cooperative interaction between northern hemisphere fronts associated with low pressure cyclones and tidally-modified return branch of the Hadley circulation

    Cyclones, tides, and the origin of a cross-equatorial dust storm on Mars

    Get PDF
    We investigate the triggering mechanism of a cross-equatorial dust storm observed by Mars Global Surveyor in 1999. This storm, which had a significant impact on global mean temperatures, was seen in visible and infrared data to commence with the transport of linear dust fronts from the northern high latitudes into the southern tropics. However, other similar transport events observed in northern fall and winter did not lead to large dust storms. Based on off-line Lagrangian particle transport analysis using a high resolution Mars general circulation model, we propose a simple explanation for the diurnal, seasonal and interannual variability of this type of frontal activity, and of the resulting dust storms, that highlights the cooperative interaction between northern hemisphere fronts associated with low pressure cyclones and tidally-modified return branch of the Hadley circulation

    Extensive MRO CRISM Observations of 1.27 micron O2 Airglow in Mars Polar Night and Their Comparison to MRO MCS Temperature Profiles and LMD GCM Simulations

    Get PDF
    The Martian polar night distribution of 1.27 micron (0-0) band emission from O2 singlet delta [O2(1Delta(sub g))] is determined from an extensive set of Mars Reconnaissance Orbiter (MRO) Compact Reconnaissance Imaging Spectral Mapping (CRISM) limb scans observed over a wide range of Mars seasons, high latitudes, local times, and longitudes between 2009 and 2011. This polar nightglow reflects meridional transport and winter polar descent of atomic oxygen produced from CO2 photodissociation. A distinct peak in 1.27 micron nightglow appears prominently over 70-90NS latitudes at 40-60 km altitudes, as retrieved for over 100 vertical profiles of O2(1Delta(sub g)) 1.27 micron volume emission rates (VER). We also present the first detection of much (x80+/-20) weaker 1.58 micron (0-1) band emission from Mars O2(1Delta(sub g)). Co-located polar night CRISM O2(1Delta(sub g)) and Mars Climate Sounder (MCS) (McCleese et al., 2008) temperature profiles are compared to the same profiles as simulated by the Laboratoire de Mtorologie Dynamique (LMD) general circulation/photochemical model (e.g., Lefvre et al., 2004). Both standard and interactive aerosol LMD simulations (Madeleine et al., 2011a) underproduce CRISM O2(1Delta(sub g)) total emission rates by 40%, due to inadequate transport of atomic oxygen to the winter polar emission regions. Incorporation of interactive cloud radiative forcing on the global circulation leads to distinct but insufficient improvements in modeled polar O2(1Delta(sub g)) and temperatures. The observed and modeled anti-correlations between temperatures and 1.27 mm band VER reflect the temperature dependence of the rate coefficient for O2(1Delta(sub g)) formation, as provided in Roble (1995)

    Dust and water global monitoring with the MIC-2 camera

    No full text

    An Investigation of Dust Storms Observed with the Mars Color Imager

    No full text
    Daily global imaging by the Mars Color Imager (MARCI) continues the record of the Mars Orbiter Camera (MOC) and has allowed creation of a long-duration record of Martian dust storms. We observe dust storms over the first two Mars years of the MARCI record, including tracking individual storms over multiple sols, as well as tracking the growth and recession of the seasonal polar caps. Using the combined 6 Mars year record of textured dust storms (storms with visible textures on the observed dust cloud tops), we study the relationship between textured dust storm activity and meteorology (as simulated by the MarsWRF general circulation model) and surface properties. We find that textured dust storms preferentially occur in places and seasons with above average surface wind stress. Textured dust storm occurrence also has a modest linear anti-correlation with surface albedo (0.43) and topography (0.40). Lastly, we perform an empirical orthogonal function (EOF) analysis on the distribution of occurrence of textured dust storms and find that over 50 of the variance in textured dust storm activity can be explained by two EOF modes. We associate the first EOF mode with cap-edge storms just before Ls = 180deg and the second EOF mode with flushing dust storms that occur from Ls = 180-210deg and again near Ls = 320deg
    corecore